MIKC-Type MADS-Box Gene Family Discovery and Evolutionary Investigation in Rosaceae Plants

نویسندگان

چکیده

MADS-box is an important transcriptional regulatory element in plant growth. The MIKC-type genes play roles. However, the identification and evolutionary investigation of family members Rosaceae have been inadequate. Therefore, based on whole-genome data from Prunus dulcis, salicina, armeniaca, persica, mira, Amygdalus nana, we depicted evolution divergence patterns genes. In this study, found 222 six species. These were classified into five clades, only motif 1 was identified across all proteins, except PdMADS42 PmiMADS16. structural properties these significantly varied sequence lengths between species, despite high levels similarity exon numbers. to mostly limited through purifying selection processes. Remarkably divergent regions inside genes’ domains, where clade III displayed more conserved activities may retained original functions over process; I, other hand, undergone substantial functional limitations a specific role. findings provide groundwork for future research molecular processes gene family.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Wide Identification of the MIKC-Type MADS-Box Gene Family in Gossypium hirsutum L. Unravels Their Roles in Flowering

Cotton is one of the major world oil crops. Cottonseed oil meets the increasing demand of fried food, ruminant feed, and renewable bio-fuels. MADS intervening keratin-like and C-terminal (MIKC)-type MADS-box genes encode transcription factors that have crucial roles in various plant developmental processes. Nevertheless, this gene family has not been characterized, nor its functions investigate...

متن کامل

Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation.

There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKC(C) type and MIKC* type. In seed plants, the MIKC(C) type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryz...

متن کامل

Antiquity and evolution of the MADS-box gene family controlling flower development in plants.

MADS-box genes in plants control various aspects of development and reproductive processes including flower formation. To obtain some insight into the roles of these genes in morphological evolution, we investigated the origin and diversification of floral MADS-box genes by conducting molecular evolutionary genetics analyses. Our results suggest that the most recent common ancestor of today's f...

متن کامل

Phylogenomics of MADS-Box Genes in Plants — Two Opposing Life Styles in One Gene Family

The development of multicellular eukaryotes, according to their body plan, is often directed by members of multigene families that encode transcription factors. MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR)-box genes form one of those families controlling nearly all major aspects of plant development. Knowing the complete complement of MADS-box genes in se...

متن کامل

Selaginella Genome Analysis – Entering the “Homoplasy Heaven” of the MADS World

In flowering plants, arguably the most significant transcription factors regulating development are MADS-domain proteins, encoded by Type I and Type II MADS-box genes. Type II genes are divided into the MIKC(C) and MIKC* groups. In angiosperms, these types and groups play distinct roles in the development of female gametophytes, embryos, and seeds (Type I); vegetative and floral tissues in spor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agronomy

سال: 2023

ISSN: ['2156-3276', '0065-4663']

DOI: https://doi.org/10.3390/agronomy13071695